preprocessing¶
Preprocessing
¶
Utility functions for cleaning and transforming light curves.
The static methods in this class operate on LightCurve objects directly, modifying them in place unless otherwise specified.
These methods are used throughout the STELA Toolkit to prepare light curves for Gaussian process modeling and spectral analysis. This includes:
- Standardizing light curve data (zero mean, unit variance)
- Applying and reversing a Box-Cox transformation to normalize flux distributions
- Checking for Gaussianity using the Shapiro-Wilk test and Q-Q plots
- Trimming light curves by time range
- Removing outliers using global or local IQR
- Polynomial detrending
- Handling NaNs or missing data
Most methods automatically store relevant metadata (e.g., original mean, std, Box-Cox lambda) on the LightCurve object for later reversal.
All methods are static and do not require instantiating this class.
Source code in stela_toolkit/preprocessing.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
|
boxcox_transform(lightcurve, save=True)
staticmethod
¶
Apply a Box-Cox transformation to normalize the flux distribution.
Also adjusts errors using the delta method. Stores the transformation parameter lambda and sets a flag for reversal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The input light curve. |
required |
save
|
bool
|
Whether to modify the light curve in place. |
True
|
Source code in stela_toolkit/preprocessing.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
check_boxcox_normal(lightcurve, plot=True)
staticmethod
¶
Apply a Box-Cox transformation and re-test for normality using the appropriate statistical test.
This method compares the normality of the original flux distribution to its Box-Cox transformed version,
using either the Shapiro-Wilk or Lilliefors test depending on sample size. If plot=True
, a Q-Q plot
is generated showing both the original and transformed data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The input light curve containing flux values. |
required |
plot
|
bool
|
Whether to show a Q-Q plot comparing original and Box-Cox transformed distributions. |
True
|
Returns:
Name | Type | Description |
---|---|---|
is_normal |
bool
|
True if the Box-Cox transformed data appears normally distributed (p > 0.05). |
pvalue |
float
|
The p-value from the normality test applied to the transformed data. |
Source code in stela_toolkit/preprocessing.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
|
check_normal(lightcurve=None, rates=[], plot=True, _boxcox=False, verbose=True)
staticmethod
¶
Test for normality using an appropriate statistical test based on sample size.
For small samples (n < 50), this uses the Shapiro-Wilk test. For larger samples, it uses the Lilliefors version of the Kolmogorov-Smirnov test. Results are printed with an interpretation of the strength of evidence against normality.
If plot=True
, a Q-Q plot of the distribution is shown. This function supports either
a full LightCurve object or a raw array of flux values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The light curve object containing the rates to test. |
None
|
rates
|
array - like
|
Direct rate values if not using a LightCurve. |
[]
|
plot
|
bool
|
Whether to display a Q-Q plot. |
True
|
_boxcox
|
bool
|
Whether this check is being called internally after Box-Cox (affects messaging only). |
False
|
verbose
|
bool
|
Whether to generate print statements. |
True
|
Returns:
Name | Type | Description |
---|---|---|
is_normal |
bool
|
True if the data appears normally distributed (p > 0.05). |
pvalue |
float
|
The p-value from the chosen normality test. |
Source code in stela_toolkit/preprocessing.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
generate_qq_plot(lightcurve=None, rates=[])
staticmethod
¶
Generate a Q-Q plot to visually assess normality.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
Light curve to extract rates from. |
None
|
rates
|
array - like
|
Direct rate values if not using a LightCurve. |
[]
|
Source code in stela_toolkit/preprocessing.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
polynomial_detrend(lightcurve, degree=1, plot=False, save=True)
staticmethod
¶
Remove a polynomial trend from the light curve.
Fits and subtracts a polynomial. Optionally modifies in place.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The input light curve. |
required |
degree
|
int
|
Degree of the polynomial (default is 1). |
1
|
plot
|
bool
|
Whether to show the trend removal visually. |
False
|
save
|
bool
|
Whether to apply the change to the light curve. |
True
|
Returns:
Name | Type | Description |
---|---|---|
detrended_rates |
(ndarray, optional)
|
Only returned if |
Source code in stela_toolkit/preprocessing.py
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
|
remove_nans(lightcurve, verbose=True)
staticmethod
¶
Remove time, rate, or error entries that are NaN.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
Light curve to clean. |
required |
verbose
|
bool
|
Whether to print how many NaNs were removed. |
True
|
Source code in stela_toolkit/preprocessing.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
remove_outliers(lightcurve, threshold=1.5, rolling_window=None, plot=True, save=True, verbose=True)
staticmethod
¶
Remove outliers using the IQR method, globally or locally.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The input light curve. |
required |
threshold
|
float
|
IQR multiplier. |
1.5
|
rolling_window
|
int
|
Size of local window (if local filtering is desired). |
None
|
plot
|
bool
|
Whether to visualize removed points. |
True
|
save
|
bool
|
Whether to modify the light curve in place. |
True
|
verbose
|
bool
|
Whether to print how many points were removed. |
True
|
Source code in stela_toolkit/preprocessing.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
|
reverse_boxcox_transform(lightcurve)
staticmethod
¶
Reverse a previously applied Box-Cox transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The transformed light curve. |
required |
Source code in stela_toolkit/preprocessing.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
standardize(lightcurve)
staticmethod
¶
Standardize the light curve by subtracting its mean and dividing by its std.
Saves the original mean and std as attributes for future unstandardization.
Source code in stela_toolkit/preprocessing.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
trim_time_segment(lightcurve, start_time=None, end_time=None, plot=False, save=True)
staticmethod
¶
Trim the light curve to a given time range.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_time
|
float
|
Lower time bound. |
None
|
end_time
|
float
|
Upper time bound. |
None
|
plot
|
bool
|
Whether to plot before/after trimming. |
False
|
save
|
bool
|
Whether to modify the light curve in place. |
True
|
Source code in stela_toolkit/preprocessing.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
unstandardize(lightcurve)
staticmethod
¶
Restore the light curve to its original units using stored mean and std.
This reverses a previous call to standardize
.
Source code in stela_toolkit/preprocessing.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|