lag_frequency_spectrum¶
LagFrequencySpectrum
¶
Compute the time lag as a function of frequency between two time series.
This class computes the lag-frequency spectrum using either:
- Two LightCurve
objects (with regularly sampled time arrays), or
- Two trained GaussianProcess
models with generated posterior samples.
If GP models are passed as inputs, the most recently generated samples are used. If none exist, the toolkit will generate 1000 samples on a 1000-point grid by default.
A positive lag means that the first input (lc_or_model1
) lags behind the
second/reference band (lc_or_model2
).
Uncertainties are estimated using: - Analytical propagation from coherence if inputs are light curves. - Empirical variance across posterior samples if inputs are Gaussian Process realizations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lc_or_model1
|
LightCurve or GaussianProcess
|
First light curve or GP model. |
required |
lc_or_model2
|
LightCurve or GaussianProcess
|
Second/reference light curve or GP model (must match shape of |
required |
fmin
|
float or auto
|
Minimum frequency for the lag spectrum. If 'auto', uses the lowest nonzero FFT frequency. |
'auto'
|
fmax
|
float or auto
|
Maximum frequency for the lag spectrum. If 'auto', uses the Nyquist frequency. |
'auto'
|
num_bins
|
int
|
Number of frequency bins to use (ignored if |
None
|
bin_type
|
str
|
Type of frequency binning: "log" or "linear" (default: "log"). |
'log'
|
bin_edges
|
array - like
|
Custom frequency bin edges (overrides |
[]
|
subtract_coh_bias
|
bool
|
Whether to subtract Poisson noise bias from the coherence estimate (default: True). |
True
|
Attributes:
Name | Type | Description |
---|---|---|
freqs |
ndarray
|
Center frequency of each bin. |
freq_widths |
ndarray
|
Width of each frequency bin. |
lags |
ndarray
|
Time lag values at each frequency. |
lag_errors |
ndarray
|
Uncertainties on the lag values. |
cohs |
ndarray
|
Coherence values at each frequency. |
coh_errors |
ndarray
|
Uncertainties on the coherence values. |
Source code in stela_toolkit/lag_frequency_spectrum.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
|
compute_lag_spectrum(times1=None, rates1=None, times2=None, rates2=None, subtract_coh_bias=True)
¶
Compute the lag spectrum for a single pair of light curves or model realizations.
The phase of the cross-spectrum is converted to time lags, and uncertainties are computed either from coherence (for raw light curves) or from GP sampling (if using stacked realizations).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
times1
|
array - like
|
Time values for the first time series. |
None
|
rates1
|
array - like
|
Rate or flux values for the first time series. |
None
|
times2
|
array - like
|
Time values for the second time series. |
None
|
rates2
|
array - like
|
Rate or flux values for the second time series. |
None
|
subtract_coh_bias
|
bool
|
Whether to subtract noise bias from the coherence estimate. |
True
|
Returns:
Name | Type | Description |
---|---|---|
freqs |
array - like
|
Center of each frequency bin. |
freq_widths |
array - like
|
Width of each frequency bin. |
lags |
array - like
|
Time lag values at each frequency. |
lag_errors |
array - like
|
Uncertainties on the lag values. |
cohs |
array - like
|
Coherence values at each frequency. |
coh_errors |
array - like
|
Uncertainties on the coherence values. |
Source code in stela_toolkit/lag_frequency_spectrum.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
compute_stacked_lag_spectrum()
¶
Compute lag-frequency spectrum for stacked GP samples.
This method assumes the input light curves are model-generated and include multiple realizations. Returns mean and standard deviation of lag and coherence.
Returns:
Name | Type | Description |
---|---|---|
freqs |
array - like
|
Frequency bin centers. |
freq_widths |
array - like
|
Frequency bin widths. |
lags |
array - like
|
Mean time lags across samples. |
lag_errors |
array - like
|
Standard deviation of lags. |
cohs |
array - like
|
Mean coherence values. |
coh_errors |
array - like
|
Standard deviation of coherence values. |
Source code in stela_toolkit/lag_frequency_spectrum.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
count_frequencies_in_bins(fmin=None, fmax=None, num_bins=None, bin_type=None, bin_edges=[])
¶
Counts the number of frequencies in each frequency bin. Wrapper method to use FrequencyBinning.count_frequencies_in_bins with class attributes.
Source code in stela_toolkit/lag_frequency_spectrum.py
304 305 306 307 308 309 310 311 312 |
|
plot(**kwargs)
¶
Plot the lag-frequency and coherence spectrum. Plot appearance can be customized using keyword arguments:
- figsize : tuple, optional Size of the figure (default: (8, 6)).
- xlabel : str, optional Label for the x-axis (default: "Frequency").
- ylabel : str, optional Label for the y-axis of the lag panel (default: "Time Lag").
- xscale : str, optional Scale for the x-axis ("log" or "linear", default: "log").
- yscale : str, optional Scale for the y-axis of the lag panel ("linear" or "log", default: "linear").
Source code in stela_toolkit/lag_frequency_spectrum.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|