gaussian_process¶
GaussianProcess
¶
Fit and sample from a Gaussian Process (GP) model for light curve interpolation.
This class models light curve data as stochastic processes governed by a Gaussian Process prior. Given a LightCurve object with time, rate, and, optionally, errors, the GP learns the, covariance structure between all the data points in the set, including measurement uncertainty and the underlying, empirical variability.
Key preprocessing and modeling features:
- If the flux distribution is non-Gaussian, an optional Box-Cox transformation can be applied.
- Data is standardized (zero mean, unit variance) prior to training for numerical stability.
- You can model measurement uncertainties directly or optionally include a learned white noise component.
- If you don’t specify a kernel, the model will automatically try several and select the best one using AIC.
Once trained, the model can generate posterior samples from the predictive distribution— these are realistic realizations of what the light curve could look like, given your data and uncertainties. These samples are used downstream in STELA for computing frequency-domain products like power spectra, coherence, cross-spectra, and lags.
Kernel selection is highly flexible:
- You can pass a simple string like 'RBF', 'Matern32', or 'SpectralMixture, 6'
- Or define arbitrary compositions using + and * operators, e.g.:
- 'RBF + Periodic * RQ'
- '(Matern32 + Periodic) * RQ'
- Composite kernels are parsed using Python syntax and safely evaluated into GPyTorch objects.
Noise handling:
- If your light curve includes error bars, they are treated as fixed noise.
- If not, or if you want to include extra variability, you can learn a white noise term.
Training is performed using exact inference via GPyTorch and gradient descent. You can configure the number of optimization steps, learning rate, and whether to visualize training loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lightcurve
|
LightCurve
|
The input light curve to model. |
required |
kernel_form
|
str or list
|
Kernel expression or list of candidate kernel names. Examples include: - 'Matern32' - 'SpectralMixture, 4' - '(Periodic + RBF) * RQ' - If 'auto', the model tries several standard kernels and selects the best using AIC. |
'auto'
|
white_noise
|
bool
|
Whether to include a learned white noise component in addition to measurement errors. |
True
|
enforce_normality
|
bool
|
Whether to apply a Box-Cox transformation to make the flux distribution more Gaussian. |
False
|
run_training
|
bool
|
Whether to train the GP model immediately upon initialization. |
True
|
plot_training
|
bool
|
Whether to plot the training loss as optimization progresses. |
False
|
num_iter
|
int
|
Number of training iterations for gradient descent. |
500
|
learn_rate
|
float
|
Learning rate for the optimizer. |
0.1
|
sample_time_grid
|
array - like
|
Time grid on which to generate posterior samples after training. |
[]
|
num_samples
|
int
|
Number of posterior samples to draw from the trained GP. |
1000
|
verbose
|
bool
|
Whether to print diagnostic information about training, sampling, and kernel selection. |
False
|
Attributes:
Name | Type | Description |
---|---|---|
model |
ExactGP
|
The trained GP model used for inference and sampling. |
likelihood |
Likelihood
|
The likelihood object (fixed or learnable noise) used during training. |
train_times |
Tensor
|
The training time grid (from the input light curve). |
train_rates |
Tensor
|
The training rate values (preprocessed and standardized). |
train_errors |
Tensor
|
The measurement error bars (or empty if not provided). |
samples |
ndarray
|
Posterior GP samples drawn after training (used in downstream STELA modules). |
pred_times |
Tensor
|
The time grid over which posterior samples were drawn. |
kernel_form |
str
|
The user-provided or auto-selected kernel expression used in the final model. |
Source code in stela_toolkit/gaussian_process.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
|
aic()
¶
Compute the Akaike Information Criterion (AIC) for the trained model.
Returns:
Name | Type | Description |
---|---|---|
aic |
float
|
The AIC value (lower is better). |
Source code in stela_toolkit/gaussian_process.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
bic()
¶
Compute the Bayesian Information Criterion (BIC) for the trained model.
Returns:
Name | Type | Description |
---|---|---|
bic |
float
|
The BIC value (lower is better). |
Source code in stela_toolkit/gaussian_process.py
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
|
create_gp_model(likelihood, kernel_form)
¶
Build a GP model with the specified likelihood and kernel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
likelihood
|
Likelihood
|
The likelihood model to use (e.g., Gaussian or FixedNoise). |
required |
kernel_form
|
str
|
The kernel type (e.g., 'Matern32', 'SpectralMixture, 4'). |
required |
Returns:
Type | Description |
---|---|
GPModel
|
A subclass of gpytorch.models.ExactGP for training. |
Source code in stela_toolkit/gaussian_process.py
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
enforce_normality()
¶
Check normality of the input data and apply a Box-Cox transformation if needed.
This method first checks if the light curve's flux distribution appears normal. If not, a Box-Cox transformation is applied to improve it. STELA automatically selects the most appropriate test (Shapiro-Wilk or Lilliefors) based on sample size.
Source code in stela_toolkit/gaussian_process.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
|
find_best_kernel(kernel_list, num_iter=500, learn_rate=0.1, verbose=False)
¶
Search over a list of kernels and return the best one by AIC.
Trains the model separately with each kernel in the list, computes the AIC, and returns the model with the lowest value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel_list
|
list of str
|
Kernel names to try. |
required |
num_iter
|
int
|
Number of iterations per training run. |
500
|
learn_rate
|
float
|
Learning rate for the optimizer. |
0.1
|
verbose
|
bool
|
Whether to print progress for each kernel. |
False
|
Returns:
Name | Type | Description |
---|---|---|
best_model |
GPModel
|
The model trained with the best-performing kernel. |
best_likelihood |
Likelihood
|
Corresponding likelihood for the best model. |
Source code in stela_toolkit/gaussian_process.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|
get_hyperparameters()
¶
Return the learned GP hyperparameters (lengthscale, noise, weights, etc.).
Returns:
Name | Type | Description |
---|---|---|
hyper_dict |
dict
|
Dictionary mapping parameter names to their (transformed) values. Note: All rate-associated hyperparameters (e.g., not lengthscale) are in units of the standardized data, not the original flux/time units. |
Source code in stela_toolkit/gaussian_process.py
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
|
load(file_path)
staticmethod
¶
Load a saved GaussianProcess model from file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
str
|
Path to the saved file. |
required |
Returns:
Type | Description |
---|---|
GaussianProcess
|
Restored instance of the model. |
Source code in stela_toolkit/gaussian_process.py
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
|
plot(pred_times=None)
¶
Plot the GP fit including mean, confidence intervals, one posterior sample, and data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_times
|
array_like
|
Time grid to show prediction, samples. If not specificed, a grid of 1000 points will be automatically used. |
None
|
Source code in stela_toolkit/gaussian_process.py
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
|
predict(pred_times)
¶
Compute the posterior mean and 2-sigma confidence intervals at specified times.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_times
|
array - like
|
Time values to predict. |
required |
Returns:
Type | Description |
---|---|
mean, lower, upper : ndarray
|
Predicted mean and lower/upper bounds of the 95 percent confidence interval. |
Source code in stela_toolkit/gaussian_process.py
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
|
sample(pred_times, num_samples, save_path=None, _save_to_state=True)
¶
Generate posterior samples from the trained GP model.
These samples represent plausible realizations of the light curve. These are what is used by the coherence, power spectrum, and lag modules when a GP model is passed in.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_times
|
array - like
|
Time points where samples should be drawn. |
required |
num_samples
|
int
|
Number of realizations to generate. |
required |
save_path
|
str
|
File path to save the samples. |
None
|
_save_to_state
|
bool
|
Whether to store results in the object (used by other classes). |
True
|
Returns:
Name | Type | Description |
---|---|---|
samples |
ndarray
|
Array of sampled light curves with shape (num_samples, len(pred_times)). |
Source code in stela_toolkit/gaussian_process.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|
save(file_path)
¶
Save the trained GP model to a file using pickle.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
str
|
Path to save the model. |
required |
Source code in stela_toolkit/gaussian_process.py
754 755 756 757 758 759 760 761 762 763 764 765 766 |
|
set_kernel(kernel_expr)
¶
Set the GP kernel (covariance function) using a simple kernel form string, or a composite expression. Compositions are created by using '+', '*', and parentheses. Also handles 'SpectralMixture, N'.
All kernels are wrapped in a ScaleKernel at the end, multiplying the overall covariance by a constant.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel_expr
|
str
|
A string expression like 'RBF + Periodic * RQ' or 'SpectralMixture, 6'. |
required |
Returns:
Name | Type | Description |
---|---|---|
covar_module |
Kernel
|
Final kernel. |
Source code in stela_toolkit/gaussian_process.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
set_likelihood(white_noise, train_errors=torch.tensor([]))
¶
Set up the GP likelihood model based on user input and data characteristics.
If error bars are available, uses a FixedNoiseGaussianLikelihood. Otherwise, defaults to a GaussianLikelihood with optional white noise. If white noise is enabled, the noise level is initialized based on Poisson statistics or variance in the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
white_noise
|
bool
|
Whether to include a learnable noise term in the model. |
required |
train_errors
|
Tensor
|
Measurement errors from the light curve. |
tensor([])
|
Returns:
Name | Type | Description |
---|---|---|
likelihood |
Likelihood
|
GPyTorch subclass, also used for training. |
Source code in stela_toolkit/gaussian_process.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
train(num_iter=500, learn_rate=0.1, plot=False, verbose=False)
¶
Train the GP model using the Adam optimizer to minimize the negative log marginal likelihood (NLML).
By default, prints progress periodically and optionally plots the NLML loss curve over training iterations.
This function is typically called after initialization unless run_training=True
was set earlier.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_iter
|
int
|
Number of optimization steps to perform. Default is 500. |
500
|
learn_rate
|
float
|
Learning rate for the Adam optimizer. Default is 0.1. |
0.1
|
plot
|
bool
|
If True, display a plot of the NLML loss as training progresses. |
False
|
verbose
|
bool
|
If True, print progress updates at regular intervals during training. |
False
|
Source code in stela_toolkit/gaussian_process.py
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|