coherence¶
Coherence
¶
Compute the frequency-dependent coherence between two light curves or GP models.
This class estimates the coherence spectrum, which quantifies the degree of linear correlation between two time series as a function of frequency. Coherence values range from 0 to 1, with values near 1 indicating a strong linear relationship at that frequency.
Inputs can be either LightCurve objects or trained GaussianProcess models from this package. If GP models are provided and posterior samples already exist, those are used. If no samples exist, 1000 GP realizations will be generated automatically on a 1000-point grid.
If both inputs are GP models, the coherence is computed for each sample pair and the mean and standard deviation across samples are returned. Otherwise, coherence is computed on the raw input light curves.
Poisson noise bias correction is supported and may be enabled to correct for uncorrelated noise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lc_or_model1
|
LightCurve or GaussianProcess
|
First input light curve or trained GP model. |
required |
lc_or_model2
|
LightCurve or GaussianProcess
|
Second input light curve or trained GP model. |
required |
fmin
|
float or auto
|
Minimum frequency for the coherence spectrum. If 'auto', uses the lowest nonzero FFT frequency. |
'auto'
|
fmax
|
float or auto
|
Maximum frequency. If 'auto', uses the Nyquist frequency. |
'auto'
|
num_bins
|
int
|
Number of frequency bins. |
None
|
bin_type
|
str
|
Type of frequency binning ('log' or 'linear'). |
'log'
|
bin_edges
|
array - like
|
Custom frequency bin edges. |
[]
|
subtract_noise_bias
|
bool
|
Whether to subtract Poisson noise bias from the coherence spectrum. |
True
|
bkg1
|
float
|
Background count rate for lightcurve 1 (used in noise bias correction). |
0
|
bkg2
|
float
|
Background count rate for lightcurve 2. |
0
|
Attributes:
Name | Type | Description |
---|---|---|
freqs |
array - like
|
Frequency bin centers. |
freq_widths |
array - like
|
Widths of each frequency bin. |
cohs |
array - like
|
Coherence values. |
coh_errors |
array - like
|
Uncertainties in the coherence values. |
Source code in stela_toolkit/coherence.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
compute_bias(power_spectrum1, power_spectrum2)
¶
Estimate the Poisson noise bias for the coherence calculation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
power_spectrum1
|
array - like
|
Power spectrum of the first light curve. |
required |
power_spectrum2
|
array - like
|
Power spectrum of the second light curve. |
required |
Returns:
Name | Type | Description |
---|---|---|
bias |
array - like
|
Estimated noise bias per frequency bin. |
Source code in stela_toolkit/coherence.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|
compute_coherence(times1=None, rates1=None, times2=None, rates2=None, subtract_noise_bias=True)
¶
Compute the coherence spectrum between two light curves.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
times1
|
array - like
|
Time and rate values for the first light curve. Defaults to object attributes. |
None
|
rates1
|
array - like
|
Time and rate values for the first light curve. Defaults to object attributes. |
None
|
times2
|
array - like
|
Time and rate values for the second light curve. Defaults to object attributes. |
None
|
rates2
|
array - like
|
Time and rate values for the second light curve. Defaults to object attributes. |
None
|
subtract_noise_bias
|
bool
|
Whether to subtract the estimated noise bias. |
True
|
Returns:
Name | Type | Description |
---|---|---|
freqs |
array - like
|
Frequency bin centers. |
freq_widths |
array - like
|
Frequency bin widths. |
coherence |
array - like
|
Coherence spectrum. |
None
|
Reserved for compatibility (with the stacked method). |
Source code in stela_toolkit/coherence.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
compute_stacked_coherence()
¶
Compute the coherence from stacked realizations of the light curves.
For multiple realizations (GP samples), this method computes the coherence for each pair of realizations and returns the mean and standard deviation.
Returns:
Name | Type | Description |
---|---|---|
freqs |
array - like
|
Frequency bin centers. |
freq_widths |
array - like
|
Frequency bin widths. |
coherence_mean |
array - like
|
Mean coherence spectrum across realizations. |
coherence_std |
array - like
|
Standard deviation of the coherence across realizations. |
Source code in stela_toolkit/coherence.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
count_frequencies_in_bins(fmin=None, fmax=None, num_bins=None, bin_type=None, bin_edges=[])
¶
Counts the number of frequencies in each frequency bin. Wrapper method to use FrequencyBinning.count_frequencies_in_bins with class attributes.
Source code in stela_toolkit/coherence.py
278 279 280 281 282 283 284 285 286 |
|
plot(freqs=None, freq_widths=None, cohs=None, coh_errors=None, **kwargs)
¶
Plot the coherence spectrum.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
dict
|
Additional keyword arguments for plot customization (e.g., xlabel, xscale). |
{}
|
Source code in stela_toolkit/coherence.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|